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Abstract 

Background:  Despite deeper understanding of the genetic landscape of acute myeloid leukemia (AML), the 
improvement of survival is still a great challenge. STK10 is overexpressed in several cancers with functions varying 
according to cancer types. But the functions of STK10 in AML has never been reported.

Methods:  We analyzed the expression, prognosis and potential functions of STK10 utilizing public web servers. 
Metascape and the String database were used for functional and protein–protein interaction analyses.

Results:  We found STK10 was enriched in blood & immune cells and overexpressed in AML. High STK10 expression 
was associated with poor overall survival, which was also identified in the subgroups of patients ≤ 60 years old and 
patients with non-high-risk cytogenetics. We demonstrated genes associated with STK10 were enriched in blood, 
spleen and bone marrow, influencing the immune function and biological process of AML. ITGB2 and ITGAM might 
directly interact with STK10 and were associated with poor prognosis. Besides, STK10 was associated with the infiltra-
tion of immune cells and immune checkpoints, like HLA-E, CD274 and GAL-9.

Conclusions:  The present study was the original description of STK10 in AML and set the stage for developing STK10 
as a new prognostic marker or therapeutic target for AML.
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Background
Acute myeloid leukemia (AML), characterized by infil-
tration of the clonal, abnormally or poorly differenti-
ated and highly proliferative cells in bone marrow (BM) 
or blood, is the second commonly known leukemia in 
adults. Despite progress in the genetic landscape and 
the followed transformation into promising therapies, 

the improvement of prognosis is still a great challenge 
for clinicians owing to the enormous molecular diversity 
[1]. Therefore, there is still an urgent need to identify new 
prognostic factors or therapeutic targets for AML.

The serine/threonine kinase 10 (STK10), also called 
lymphocyte-oriented kinase (LOK) and PRO2729, is 
located on nucleoplasm and plasma membrane [2]. The 
production of STK10 is mainly synthesized in lympho-
cytes and shows homology to the STE20 family members, 
notably involved in the mitogen-activated protein kinase 
(MAPK) cascades [3]. It has been demonstrated that the 
STK10 might act as a tumor suppressor in the aggres-
sive lymphoma [4] but implicated an pro-tumor action 
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in ewing sarcoma [5], indicating that STK10 might play 
diverse functions according to different tumor types.

A vital function of STK10 is to phosphorylate the polo-
like kinase 1 (PLK1) [3], which has been found to be 
involved in the regulation of the cell cycle, especially in 
the G2/M transition and during mitosis [6–9]. PLK1 is 
overexpressed in several solid tumors and leads to poor 
prognosis, as well as in AML [7, 9, 10]. STK10 also func-
tions as an ezrin-radixin-moesin (ERM) kinase, activat-
ing the ERM family of proteins which are involved in the 
development and metastasis of various types of cancers, 
like prostate cancer, breast cancer and rhabdomyosar-
coma, etc. [3, 11–13]. The knockout or caspase cleavages 
of STK10 result in dephosphorylation of ERM, further 
inhibiting cell migration [3, 11]. According to a recent 
study, ezrin (EZR), a member of ERM, has been identi-
fied as a marker of poor prognosis in AML. EZR inhibi-
tors successfully inhibited the viability and autonomous 
clonal growth in AML cells [14]. These observations may 
suggest an indication of the regulating function of STK10 
in AML. However, the potential functions of STK10 in 
AML have not been explored so far.

In the present study, we uncovered the characteristic 
of STK10 expression in AML, as well as the prognos-
tic values of STK10. Then we investigated the functions 
of STK10-associated genes and the interaction between 
STK10 and the STK10-related proteins. Finally, the rela-
tionship between STK10 expression and immune cell 
infiltration in AML was also explored. Our work has 
made some contributions to our understanding of the 
biological functions of STK10 in AML.

Methods
Human Protein Atlas (HPA) analysis
HPA (https://​www.​prote​inatl​as.​org) is open access for 
users. It provides a huge atlas by various omics technolo-
gies, including antibody-based imaging, mass spectrom-
etry-based proteomics, transcriptomics and systems 
biology [2]. We acquired STK10 expression in different 
cell types by searching the term “STK10” in the field of 
“Cell Type category (RNA)”. The result provides a sum-
mary of single-cell RNA, denoted by normalized expres-
sion (NX) of transcripts per million (TPM), from all 
normal single cell types.

Gene Expression Profiling Interactive Analysis (GEPIA) 
analysis
GEPIA (https://​www.​gepia.​cancer-​pku.​cn) is devel-
oped based on the RNA-seq data of 9,736 tumors and 
8,587 normal samples from the Cancer Genome Atlas 
(TCGA) and the Genotype-Tissue Expression project 
(GTEx) [15]. The general module on the homepage of 
the website provides the summary information and gene 

expression profile. The bar plot was adopted to present 
STK10 expression across all tumor samples and paired 
normal tissues, in which the ordinate offers TPM values 
of samples.

GEO, TCGA and GETx data download and process
To compare the expression of STK10 between tumor and 
normal tissues, we acquired the TPM format of RNA-seq 
data in TCGA and GTEx database that uniformly pro-
cessed by Toil’s method [16] from UCSC Xena (https://​
xenab​rowser.​net/​datap​ages/). Then we download the lat-
est RNA-seq and clinical information from the TCGA 
database (https://​portal.​gdc.​cancer.​gov/). The data from 
the TCGA database was transformed from HTSeq-frag-
ments per kilobase per million (FPKM) to TPM for the 
following analysis.

Besides, we acquired expression data of GSE9476 [17] 
from the Gene Expression Omnibus (GEO) repository 
(https://​www.​ncbi.​nlm.​nih.​gov/​gds/) to verify the results 
we concluded. GSE9476 provides expression profiling by 
array, collected from leukemic blasts of 26 AML patients 
and CD34+ selected cells of 8 BM of health donors. The 
log2 expression value obtained from gcRMA analyses 
was processed in our analysis.

Metascape analysis
Metascape (http://​metas​cape.​org) is a practical tool to 
infer enriched biological pathways. By submitting over-
lapping genes in the multiple gene list module, func-
tional enrichments in Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
were analyzed automatically [18]. Metascape database 
also provides enrichment analysis with Pattern Gene 
Database (PaGenBase) [19], providing further views in 
cells, tissues or organs the genes enriched in, and Tran-
scriptional Regulatory Relationship Unraveled by Sen-
tence-based Text mining (TRRUST) [20], offering key 
regulatory factors of the gene list.

String analysis and process
The String database version 11.0b (https://​string-​db.​
org/) could provide known and predicted protein–pro-
tein interactions (PPI) covering 24,584,628 proteins from 
5090 organisms [21]. We employed the multiple proteins 
module to identify existing proteins by submitting the 
genes associated with STK10, and further constructed the 
PPI network. Through the Cytoscape software (v3.8.0) 
[22], we disposed of the string interaction file, produced 
by the String database automatically, for visualization of 
the network.

https://www.proteinatlas.org
https://www.gepia.cancer-pku.cn
https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/gds/
http://metascape.org
https://string-db.org/
https://string-db.org/
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Immune infiltration
ssGSEA algorithm was used to assessment the level of 
immune infiltration [23]. The method uses a gene set 
which provides specific makers of immune cells to cal-
culate the enrichment score of immune cells. After get-
ting the level of immune infiltration in each sample, the 
Spearman’s test was used for exploring the correlation of 
STK10 with immune infiltration.

Statistical analysis
Analyses of samples were processed using R (version 
3.6.3). We classified the data into two groups according to 
the median value of STK10 expression. Categorical vari-
ables, like sex, age, cytogenetic risk and French-Ameri-
can-British (FAB) classifications, were tested by Pearson’s 
chi-square and Fisher’s exact tests. Continuous variables 
mainly included White blood cell (WBC) count, BM 
blasts, peripheral blood (PB blasts) and gene expression. 
If the continuous variable does not obey normal distri-
bution, examined by the Shapiro–Wilk test, the Mann–
Whitney U test was used for the comparison, otherwise 
the Student-t test was adopted. Gene expression between 
STK10high and STK10low groups with the absolute value of 
log2 fold change (log2FC) > 1 and P.adj < 0.5 was consid-
ered as differentially expressed. The Spearman’s test was 
implemented to probe the correlation between STK10 
and related genes, as well as immune cell infiltration 
level. Overall survival (OS) was compared using the Log-
rank testing. P value < 0.05 was considered as significant 
(ns: P > 0.05, *: P < 0.05, **: P ≤ 0.01, ***: P ≤ 0.001).

Univariate and multivariate survival analyses was car-
ried out using Cox regression models to test the function 
of STK10 in predicting patients’ survival. The multi-
variate survival analysis would be performed based on 
factors with statistical significance (P < 0.05) in the uni-
variate analysis.

R packages adopted in this research included ggpolt2 
package (v_3.3.3) and survminer package (v_0.4.9) for 
visualization, pROC package (v_1.17.0.1) for drawing 
receiver operating characteristic (ROC) curve, survival 
package (v_3.2-10) for analyzing OS, DEseq2 package 
(v_1.26.0) for figuring out the differential genes with 
STK10, and stat package (v_3.6.3) for correlation analy-
sis with STK10. The correlation between STK10 and 
immune infiltration was analyzed by the GSVA package 
(v_1.34.0).

Results
STK10 overexpression in AML
To elucidate the cell type specificity of STK10 expres-
sion, we first analyzed STK10 expression based on the 
RNA-seq data from the HPA database. We listed the top 

40 cell types based on nTPM (normalized transcripts per 
million) value of STK10 and numbered the top five with 
the value of nTPM. The levels of STK10 mRNA expres-
sion were higher in blood &immune cells, like NK cells, 
Dendritic cells, kupffer cells, T-cells and macrophages 
(Fig. 1a). Subsequently, we tested the expression of STK10 
in different types of cancers by comparing the RNA-seq 
data of TCGA and GTEx projects in the GEPIA database. 
The results revealed that the level of STK10 expression 
was up-regulated significantly in AML (Fig. 1b). Figure 1c 
uncovered the difference of STK10 expression between 
173 AML and 70 normal BM samples individually 
(P < 0.001). The ROC curve was also adopted to examine 
the capacity of STK10 to distinguish AML from normal 
samples. As presented in Fig. 1d, the area under the curve 
(AUC) was 1.00 (P < 0.001), suggesting the expression of 
STK10 could be an ideal marker to distinguish AML from 
normal tissues. Then we verified the expression of STK10 
in GSE9476, another dataset from GEO. And the differ-
ential expression of STK10 was also observed (Fig.  1e, 
P < 0.001).

Relationships between STK10 and clinicopathological 
characteristics of patients with AML
We stratified 151 patients into two groups based on the 
median value of the STK10 expression (median value, 
77.64). Characteristics between the two groups were 
summarized in Table  1. 75 patients were classified into 
the STK10low group, and 76 patients were in the STK10h-

igh group. Significant differences were observed in age 
grouped by 60 years old (P = 0.025) and cytogenetic risk 
stratification (P < 0.001) between STK10low and STK10h-

igh groups. No significant differences existed in gender, 
WBC count, BM blast, PB blasts and FAB classification.

We next tested the expression of STK10 in differ-
ent groups of age and cytogenetic risk stratification. In 
the patients > 60 years old, the expression of STK10 was 
higher when compared to the patients ≤ 60  years old 
(P = 0.034, Fig.  2a). STK10 was overexpressed in inter-
mediate- (P < 0.001) and poor- (P < 0.001) risk groups 
compared with the favorable group (Fig.  2b). And there 
was no difference between intermediate- and poor- risk 
groups. Based on the ROC curve, we found that low 
expression of STK10 could serve as a diagnostic factor 
in predicting the favorable cytogenetic risk with medium 
accuracy (AUC = 0.832, CI 0.757–0.908, Fig. 2c. We fur-
ther evaluated the STK10 expression in specific cytoge-
netics (Fig. 2d). STK10 expression was the lowest in the 
inv(16) group, showing no difference with that in the 
t(15;17) and t(8;21) groups, compared with the interme-
diate- or poor- risk groups. In addition, the expression of 
STK10 indicated no statistical significance between the 
intermediate- and poor- risk groups.
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Fig. 1  STK10 expression in different cell types and tumors. a STK10 expression in different cell types, analyzed by HPA. b STK10 expression across 
various tumors and normal tissues, analyzed by GEPIA. c The expression of STK10 between normal tissues and AML based on data from TCGA and 
GETx. d ROC curve based on STK10 expression in distinguishing normal tissues and AML. e STK10 expression on AML and health donors in GSE9476
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High STK10 expression is associated with a poor prognosis 
of AML
The association between STK10 expression and OS of 
patients with AML was evaluated by Kaplan–Meier 
(K-M) analysis, which indicated that low expression 
of STK10 was correlated with favorable OS in AML 
(HR 1.85, CI 1.21–2.84, P = 0.003, Fig.  3a). We further 
explored the relationship between STK10 expression 
and OS of the specific subgroups. As shown in Fig.  3b, 
c, among the patients ≤ 60  years old, the patients with 
STK10low expression had higher OS when compared with 
those with STK10high expression (P = 0.049). However, 
the OS benefit of STK10low expression could not be seen 
among the patients > 60  years old (P = 0.214). Similarly, 
the significant difference in OS between the STK10low 
and STK10high expression could only be found in the 
favorable & intermediate risk group (P = 0.009, Fig. 3d, e).

We performed univariate and multivariate survival 
analyses based on patients’ clinical characteristics and 
the expression of STK10 by cox regression analysis. As 
presented in Additional file 1, the P values of age, cytoge-
netic risk and STK10 in the univariate analysis show 

statistical significances. In further multivariate analy-
sis, the HR (95% CI) between STK10low and STK10high 
groups is 1.562 (1.001–2.438) with statistical significance 
(P = 0.050). This result indicates the expression of STK10 
could predict patients’ survival as an independent prog-
nostic factor.

STK10 associated gene analysis between STK10high 
and STK10low groups in AML
In order to further evaluate the functional role of STK10 
in AML, we first analyzed the expression of differential 
genes between STK10low and STK10high groups based on 
the TCGA database. A total of 1999 genes had a signifi-
cant difference between STK10high and STK10low groups 
(P.adj < 0.05, |log2FC|> 1, see Additional file 2), including 
704 up-regulated genes (red triangle) and 1295 down-
regulated genes (blue triangle) as shown in the volcano 
plot (Fig. 4a).

Then the correlation of genes in conjunction with 
STK10 expression was identified by the Spearman’s cor-
relation test. A total of 5804 gens were found correlated 
with STK10 expression (P < 0.05, and |cor|≥ 0.3, Addi-
tional file  3). We listed the top ten of 5228 positively 
correlative genes and the top ten of negatively 576 cor-
relative genes in Fig. 4b. Among the positively correlative 
genes, 319 genes were significantly up-regulated (Fig. 4c). 
And 178 genes were significantly down-regulated in the 
negatively correlative genes (Fig.  4d). The overlapping 
genes were processed into biological function analysis 
and PPI analysis subsequently.

Biological function of STK10‑associated overlapping genes
We then investigated the biological function of the 
497 overlapping genes in the Metascape database. As 
listed in Fig. 5a, the summary of enrichment analysis in 
PaGenBase revealed the overlapping genes were mainly 
enriched in blood, spleen and BM, indicating their poten-
tial function in the hematological system. Through the 
GO/KEGG pathway annotations, we found that these 
genes were associated with several biological processes of 
leukemia, like regulation of cytokine production, phago-
cytosis, myeloid leukocyte activation, leukocyte migra-
tion and tumor necrosis factor superfamily cytokine 
production (Fig.  5b). Besides, three clusters belonged 
to the immune system, including the immune effec-
tor process, regulation of defense response, and immu-
noregulatory interactions between a Lymphoid and a 
non-Lymphoid cell. Besides, relevant regulatory genes 
of the overlapping genes provided by TRRUST were pre-
sented in Fig. 5c, some of which have been identified as 
crucial factors in leukemogenesis, such as SPI1, CEBPA, 
STAT1, TP53, RARA​ and WT1 [24–29].

Table 1  Correlations between STK10 expression and 
clinicopathological features in AML from TCGA cohort

n number of patients, WBC white blood cell, BM bone marrow, PB peripheral 
blood, FAB French–American–British, Q1 lower quartile, Q3 upper quartile

Characteristics STK10 expression P value

Low (n = 75) High (n = 76)

Sex, male/female 43/32 40/36 0.677

Age, n (%) 0.025

 ≤ 60 51 (33.8%) 37 (24.5%)

 > 60 24 (15.9%) 39 (25.8%)

WBC (109/L), meidan (Q1–
Q3)

14 (4, 41.5) 26 (6, 75.5) 0.075

BM blasts(%), meidan (Q1–
Q3)

40 (5, 64) 36 (11, 64.75) 0.518

PB blasts(%), meidan (Q1–
Q3)

72 (49.5, 85.5) 71 (50.75, 84.25) 0.863

Cytogenetic risk, n (%) < 0.001

 Favorable 27 (18.1%) 4 (2.7%)

 Intermediate 31 (20.8%) 51 (34.2%)

 Poor 16 (10.7%) 20 (13.4%)

FAB classifications, n (%) 0.183

 M0 7 (4.7%) 8 (5.3%)

 M1 12 (8%) 23 (15.3%)

 M2 20 (13.3%) 18 (12%)

 M3 12 (8%) 3 (2%)

 M4 14 (9.3%) 15 (10%)

 M5 7 (4.7%) 8 (5.3%)

 M6 1 (0.7%) 1 (0.7%)

 M7 1 (0.7%) 0 (0%)
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PPI identifies the STK10‑related proteins
The PPI analysis was conducted by inputting the 497 
overlapping genes into the String database. As a result, 
172 nodes and 631 edges were obtained (Additional 
file  4). The nodes colored yellow were the proteins that 
directly interacted with STK10. We showed the pro-
teins at length in Fig. 6a, including 8 nodes and 23 edges. 
Among them, ITGB2 (also called LFA-1) and ITGAM 
were overexpressed in AML (Fig.  6b, e) and positively 
correlated with STK10 (P < 0.001, Fig.  6c, f ). According 
to the K-M plot, ITGB2 and ITGAM were also related to 
poor OS in AML (P = 0.003 and P = 0.027 respectively, 
Fig. 6d, g). The expression of ITGB2 and ITGAM in the 

dataset GSE9476 was also higher in tumor samples com-
pared with donors (Additional file 5a, c). Both ITGB2 and 
ITGAM was positively correlated with STK10 expression 
in GSE9476 (Additional file 5b, d).

In Fig. 6a, seven genes were found to be associated with 
STK10 directly in the protein–protein interactions analy-
sis, including CEACAM3, ITGAM, TNFRSF1B, ADAM8, 
ITGB2, SH3BP5 and MS4A3. Mann–Whitney U test 
was adopted to compare the expression of these genes 
between normal tissues and tumor samples from AML. 
And five genes (CEACAM3, ITGAM, ADAM8, ITGB2 
and SH3BP5) were selected to enter the univariate and 
multivariate survival analyses with STK10 to prove that 

Fig. 2  Correlation between STK10 expression and clinical characteristics, based on data from TCGA. a STK10 expression in AML with different 
ages. b STK10 expression in AML with different cytogenetics risk stratifications. c ROC curve based on STK10 expression in predicting the favorable 
cytogenetic risk. d STK10 expression in AML with specific cytogenetics
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whether high STK10 expression is an independent prog-
nostic indicator in AML.As shown in Additional file  6, 
high level expression of ITGAM, ITGB2 and STK10 own 
statistical significances (P < 0.05) in the univariate analy-
sis. In the further multivariate analysis, the HR (95% 
CI) between the high expression level and low expres-
sion level of STK10 is 1.610 (1.015–2.554) with statistical 
significance (P = 0.043), indicating STK10 could act as a 
prognostic indicator for patients with AML at the genetic 
level.

STK10 expression and immune cell infiltration in AML
The results above suggested that STK10 associated genes 
were involved in immunologic function (Fig.  5b). Thus, 
we further explored the relationship between STK10 and 
immune cell infiltration in AML. As shown in Fig.  7a, 
STK10 was significantly positively correlated with several 
immune cells, like regulatory T cells (TReg), CD8 T cells, 
T follicular helper (TFH), Th17 cells, NK CD56dim cells 
and cytotoxic cells (|cor|≥ 0.3, P < 0.05). Grouped by the 

median value of STK10 expression, the infiltration levels 
of all these immune cells were significantly higher in the 
STK10high group (Fig. 7b, d, f, h, j, l). The correlation of 
STK10 expression with immune cell infiltration was also 
evaluated (Fig.  7c, e, g, i, k, m), revealing the positive 
association with STK10.

We know that NK cells and cytotoxic T lymphocytes 
(CTLs) exert the antitumor effect through the combina-
tion of the receptors on the surface of the effector cells and 
the corresponding ligands on the surface of the target cells 
[30–32]. Therefore, we explored the association between 
STK10 expression and these ligands on the surface of 
AML cells, such as HLA-A, HLA-B, HLA-C, HLA-E, PD-
L1(CD274), PD-L2 and GAL-9(produced by LGALS9), etc. 
Among them, HLA-E, CD274 and LGALS9 were overex-
pressed on tumor cells (Fig. 8a, d, g) and predicted poor OS 
in AML (Fig.  8b, e, h). Moreover, Spearman’s correlation 
test revealed the positive correlation between these ligands 
on tumor cells with STK10 (Fig. 8c, f, i). We also explored 
the expression of HLA-E and LGALS9 in GSE9476. The 

Fig. 3  Prognostic values of STK10 in AML patients, based on TCGA datasets. a Survival curves of OS between the STK10low and STK10high 
groups. Prognostic values of STK10 had been shown in the subgroup of the patients ≤ 60 years (b), the patients > 60 years (c), the patients with 
favorable&intermediate cytogenetic risks (d) and the patients with poor cytogenetic risks (e)
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results were consistent with our findings above that HLA-E 
was overexpressed on tumor cells and positively correlated 
with STK10 expression (Additional file 5e, f ). Although the 
expression of LGALS9 on tumor samples was higher as 
well, the spearman’s correlation test showed there was no 
statistical correlation between STK10 and LGALS9 (Addi-
tional file 5g, h).

Discussion
AML is a highly heterogeneous disease with different 
outcomes even among patients with the same known 
genetic background, indicating more accurate prognostic 

and therapeutic targets need to be developed. The pos-
sible mechanisms of the poor prognosis include the exist-
ence of leukemia stem cells, the interaction with BM 
microenvironment, immune evasion or clonal evolution 
leading to primary or acquired chemoresistance. The 
overexpression and potential pathogenetic significance 
of STK10 in multiple cancers have been observed [5, 11, 
33]. However, the relationship between STK10 and AML 
has not been examined to date and needs to be further 
explored.

The STK10 transcript was presented in several tissues 
and expressed highly in hematopoietic cells [34]. It had 

Fig. 4  Genes associated with STK10 expression. a Volcano plot of different gene expression profiles between STK10high and STK10low groups. b 
Top ten co-expression genes positively and negatively associated with STK10 based on Spearman test’s value. c Overlapping genes that were 
significantly up-regulated and positively correlated with STK10. d Overlapping genes that were significantly down-regulated and negatively 
correlated with STK10 
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Fig. 5  Functional analysis of the overlapping genes in AML. a Enrichment of the overlapping genes in tissues and cells based on PaGenBase. b 
Analysis of GO and KEGG pathways associated with STK10. c The relevant regulatory genes of the overlapping genes based on the TRRUST
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been found that STK10 mutations were associated with 
hematological diseases, like peripheral T-cell lymphoma 
(PTCL) and Burkitt lymphoma (BL) [4, 33]. Our results 
confirmed STK10 possessed the cell specificity in blood 

& immune cells and overexpressed especially in AML, 
maybe serving as a promising marker in predicting the 
malignant transformation to AML.

Fig. 6  PPI network of the overlapping genes. a Genes from (Additional file 4) interacted with STK10 directly. b, e The expression of ITGB2 and ITGAM 
between normal tissues and AML. c, f The co-expression of ITGB2 and ITGAM with STK10. d, g The prognostic value of ITGB2 and ITGAM in AML
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Fig. 7  The relationship between STK10 and the immune cell infiltration. a Forrest plot showing the connection between STK10 and the immune 
cell infiltration levels. b, d, f, h, j, l The levels of various immune cells (|cor|≥ 0.3, p < 0.05) in STK10low and STK10high groups. c, e, g, i, k, m The 
correlation of STK10 expression with the specific immune cell infiltration levels. Cytotoxic cells: including CD8 T cells, Tgd, and NK cells
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Several studies related to the STK10 in cancers have 
defined the association of STK10 with diverse outcomes 
depending on the type of cancer [2]. In the current 
study, we demonstrated that high STK10 expression 
carried an increased risk of poor OS in AML. The 
same findings were also identified in the subgroups 

of the patients ≤ 60  years old or with the non-high-
risk cytogenetics. Furthermore, the low expression 
of STK10 might become an indication of distinguish-
ing the patients with favorable cytogenetics, includ-
ing inv(16), t(8;21) and t(15;17), from the unfavorable 
cytogenetic risks.

Fig. 8  The roles of specific immune checkpoints in AML. a, d, g The expression of HLA-E, CD274 and LGALS9 between normal tissue and AML. b, e, h 
The prognostic value of HLA-E, CD274 and LGALS9 in AML. c, f, i The co-expression of HLA-E, CD274, LGALS9 with STK10 
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A slice of studies reported STK10 was mainly expressed 
in spleen, thymus, BM, placenta and peripheral blood 
leukocytes, indicating the potential pathogenetic signifi-
cance in hematopoietic tissues [3, 34]. Consistent with 
the above findings, our functional analysis manifested 
that STK10 associated genes showed functional speci-
ficity mainly in blood, spleen and BM. We also identi-
fied these genes were associated with several biological 
processes of leukemia, like regulation of cytokine pro-
duction, phagocytosis, myeloid leukocyte activation, 
leukocyte migration and tumor necrosis factor super-
family cytokine production, all of which were related to 
the origin, pathophysiology and histopathology of AML 
[35]. Besides, we reported two potential genes, which 
directly interacted with STK10, influenced the survival 
of AML patients. ITGB2 and ITGAM have tissue speci-
ficity on BM [2] and take part in a portion of vital bio-
logical processes. For example, ITGB2 is involved in 
adhesion, migration of leukocytes [36] and immune 
response including NK cell-induced cytotoxicity [37–39]. 
From a bioinformatics analysis, ITGAM and ITGB2 were 
also up-regulated in myeloma and involved in cytokine-
cytokine receptor interaction, innate immune response 
and inflammatory response that were similar to our 
results [40]. Moreover, the integrin ITGAM/ITGB2, 
associated with immunity and inflammation [41, 42], was 
gradually increased along with hematopoietic stem cells 
(HSC) differentiation in mice [41], suggesting the indi-
rect role of STK10 in immune and defense. However, this 
view still needs to be verified by further studies.

It is universally acknowledged that immune dysregu-
lation is a general feature in most of cancers including 
AML. Infiltrating immune cells participate in the regu-
lation of quite a few biological processes, like chemo-
therapy, immunotherapy, immune escape and disease 
progression [43, 44]. Our work implicated that both 
CD56dim NK cells and CD8 + T cells are positively asso-
ciated with STK10. The mature CD56dim/NKG2A-/
KIR+/CD57 + NK cells developing from CD56bright/
NKG2A + NK cells can exert greater cytotoxicity to 
HLA-E + target cells [30, 45, 46]. Previous studies 
reported that NKG2A, as an inhibitory receptor, was 
overexpressed in AML and associated with failure to 
achieve remission [46]. Consistent with these results 
above, we found HLA-E, the ligand for NKG2A on can-
cer cells, was also overexpressed indicating poor OS in 
AML. Moreover, our work unraveled that STK10 was 
positively correlated with the expression of HLA-E, 
potentially accounting for the crosstalk of HLA-E and 
STK10. Besides, NKG2A was also expressed on CD8 + T 
cells and identified as a new immune checkpoint [47, 48].

The rationale for widespread exploration of pro-
grammed cell death 1 protein (PD-1) inhibitors in AML 

is supported by the increased expression of programmed 
cell death ligand 1(PD-L1, CD274) and its prognostic 
value [49]. By blocking either the co-inhibitory recep-
tor PD-1 or its ligand PD-L1, PD-1 inhibitors activate 
T cell-induced antitumor activity [32, 49]. T-cell immu-
noglobin mucin-3 (TIM-3) which could be activated by 
GAL-9 acted as an inhibitory receptor expressed on T 
cells [32]. Therefore, we studied ligands expression of 
these immune checkpoints. In our analysis, the expres-
sions of GAL-9 and CD274 were higher in patients with 
AML, indicating poor prognosis as well. Moreover, a pos-
itive correlation between these immune checkpoints with 
STK10 expression was also observed. All the findings 
above suggested an immunoregulatory effect of STK10.

In summary, we clarified that STK10 was overex-
pressed in tumor cells and correlated with an unfavorable 
prognosis in AML. Functional studies revealed the close 
association of STK10 with several biological processes in 
AML. Besides, we identified two potential genes that may 
tightly interact with STK10 in the pathogenesis of AML, 
which required further investigation. Our findings also 
suggested that STK10 might influence immune cell infil-
tration and was associated with immune escape by inter-
acting with some immune checkpoints. Taken together, 
our work led to the first expansion of our understanding 
of the significance of STK10 as a new prognostic factor or 
therapeutic target for AML.
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